Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Yu Liu,<sup>a</sup> Duan-Jun Xu<sup>a</sup>\* and Chen-Hsiung Hung<sup>b</sup>

<sup>a</sup>Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China, and <sup>b</sup>Department of Chemistry, National Changhua University of Education, Changhua, Taiwan

Correspondence e-mail: xudj@mail.hz.zj.cn

#### Key indicators

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.005 Å Disorder in solvent or counterion R factor = 0.052 wR factor = 0.135 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Tris(phenanthroline-κ<sup>2</sup>N,N')cobalt(II) fumarate fumaric acid tetrahydrate

The title compound,  $[Co(C_{12}H_8N_2)_3](C_4H_2O_4)_{0.5}(C_4H_3O_4)$ . 1.5C<sub>4</sub>H<sub>4</sub>O<sub>4</sub>·4H<sub>2</sub>O, consists of the cobalt(II) complex cation with phenanthroline (phen), half a fumarate dianion, a fumarate monoanion, one and a half fumaric acid molecule and uncoordinated water molecules. The separations of 3.342 (8) and 3.493 (15) Å between the phen rings related by inversion centers indicate the existence of  $\pi$ - $\pi$ -stacking interactions between the neighboring complex ions. These complex molecules assemble as hydrophobic layers *via*  $\pi$ - $\pi$ stacking. Fumarate, fumaric acid and water are linked to each other to form hydrophilic layers by hydrogen bonding in the crystal structure.

### Comment

Crystals of the title complex were obtained accidentally during the preparation of a Co<sup>II</sup> complex bridged by fumarate. The Co<sup>II</sup> complex displays an octahedral geometry (Fig. 1), formed by three chelating phenanthroline (phen) molecules. In addition to the Co<sup>II</sup> complex, a fumarate dianion, fumarate monoanion and fumaric acid occur in title compound. They were recognized by comparing the differences in C-O bonds in the carboxyl groups. The smaller differences of 0.013 (6) Å in the C41-carboxyl group and 0.041 (8) Å in the C61-carboxyl group (Table 1) indicate that both the C41- and C61-carboxyls are deprotonated groups, while the larger differences of 0.055 (6) Å in the C44-carboxyl, 0.089 (8) Å in the C51carboxyl and 0.119 (6) Å in the C53- and C55-carboxyl groups showed that these carboxyl groups are unionized. The fumarate monoanion is located in a crystallographic general position, while the fumarate dianion and neutral fumaric acid molecule are located on inversion centers. The Co<sup>II</sup> complex displays an octahedral geometry, formed by three chelating phen molecules with normal bond distances and angles.



An extensive hydrogen-bonding network occurs between carboxylic/carboxylate groups and water molecules, as shown in Fig. 1 and Table 2. The separations of 3.342 (8) and 3.493 (15) Å indicate the existence of  $\pi$ - $\pi$ -stacking interactions between neighboring phen molecules related by an inversion center, as shown in Fig. 2. An approximately parallel arrangement of the C53-fumaric acid with the N5-phen ring is observed (Fig. 3). The shorter distances to the N5-phen plane

 $\odot$  2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 9 April 2003 Accepted 22 April 2003 Online 30 April 2003



#### Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding. H atoms bonded to the C atoms and disordered C atoms have been omitted for clarity. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z; (iii) 1 - x, 1 - y, -z; (iv) 1 - x, -y, -z.]



#### Figure 2

A molecular packing diagram; H atoms have been omitted for clarity.

of 3.341 (4) Å (C53) and 3.419 (5) Å (C54) may suggest the existence of  $\pi$ - $\pi$  interactions between the fumaric acid and phen ring.

The carbon skeleton of the C51-fumaric acid and C61-fumarate dianion exhibit disorder, just as in a manganese complex (Liu *et al.*, 2003).

# **Experimental**

A dimethylformamide solution (20 ml) containing  $CoCl_2.6H_2O$  (0.12 g, 0.5 mmol), 1,10-phenanthroline (0.18 g, 1 mmol) and fumaric acid (0.058 g, 0.5 mmol) was refluxed in air for 2 h. Pale pink single crystals of the title compound were obtained from the filtrate after 2 weeks.





A diagram showing the  $\pi$ - $\pi$  stacking between the fumaric acid and phen ring system.

Z = 2

 $D_x = 1.506 \text{ Mg m}^{-3}$ 

Cell parameters from 13658

Mo  $K\alpha$  radiation

reflections

 $\begin{array}{l} \theta = 1.5 {-} 27.0^{\circ} \\ \mu = 0.47 \ \mathrm{mm}^{-1} \end{array}$ 

T = 298 (2) K

 $0.42 \times 0.22 \times 0.08 \text{ mm}$ 

Plate, pink

Crystal data

$$\begin{split} & [\text{Co}(\text{C}_{12}\text{H}_8\text{N}_{2})_3](\text{C}_4\text{H}_{2}.\\ & \text{O}_{4})_{0.5}(\text{C}_4\text{H}_3\text{O}_4)\cdot 1.5\text{C}_4\text{H}_4\text{O}_4\cdot 4\text{H}_2\text{O} \\ & M_r = 1017.81\\ & \text{Triclinic, } P\overline{1}\\ & a = 12.167 \text{ (2) } \text{ \AA}\\ & b = 12.487 \text{ (2) } \text{ \AA}\\ & c = 17.040 \text{ (2) } \text{ \AA}\\ & \alpha = 102.85 \text{ (2)}^{\circ}\\ & \beta = 90.28 \text{ (1)}^{\circ}\\ & \gamma = 116.39 \text{ (2)}^{\circ}\\ & \gamma = 245.0 \text{ (8) } \text{ \AA}^3 \end{split}$$

# Data collection

Bruker SMART CCD9991 independent reflectionsdiffractometer5138 reflections with  $I > 2\sigma(I)$  $\omega$  and  $\varphi$  scans $R_{int} = 0.035$ Absorption correction: multi-scan $\theta_{max} = 27.6^{\circ}$ (SADABS; Bruker, 1999) $h = -15 \rightarrow 15$  $T_{min} = 0.82, T_{max} = 0.96$  $k = -10 \rightarrow 16$ 14499 measured reflections $l = -22 \rightarrow 21$ 

# Refinement

Refinement on  $F^2$ H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.052$  $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2]$  $wR(F^2) = 0.135$ where  $P = (F_o^2 + 2F_c^2)/3$ S = 0.86 $(\Delta/\sigma)_{max} = 0.002$ 9991 reflections $\Delta\rho_{max} = 0.76$  e Å<sup>-3</sup>658 parameters $\Delta\rho_{min} = -0.46$  e Å<sup>-3</sup>

## Table 1

Selected geometric parameters (Å).

| Co-N5  | 2.078 (2) | O4-C44  | 1.217 (4) |
|--------|-----------|---------|-----------|
| Co-N3  | 2.084 (2) | O11-C51 | 1.277 (6) |
| Co-N6  | 2.086 (3) | O12-C51 | 1.188 (6) |
| Co-N4  | 2.097 (3) | O13-C53 | 1.295 (5) |
| Co-N1  | 2.101 (2) | O14-C53 | 1.176 (4) |
| Co-N2  | 2.111 (2) | O15-C55 | 1.307 (4) |
| O1-C41 | 1.242 (4) | O16-C55 | 1.188 (4) |
| O2-C41 | 1.255 (4) | O17-C61 | 1.207 (6) |
| O3-C44 | 1.272 (4) | O18-C61 | 1.248 (5) |

| Table 2                       |     |
|-------------------------------|-----|
| Hydrogen-bonding geometry (Å, | °). |

| $D - H \cdot \cdot \cdot A$    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------------|------|-------------------------|--------------|------------------|
| O3-H03···O18 <sup>v</sup>      | 0.86 | 1.69                    | 2.457 (4)    | 147              |
| O13-H013···O17                 | 0.94 | 1.67                    | 2.537 (5)    | 152              |
| O15-H015···O1                  | 0.87 | 1.89                    | 2.488 (4)    | 124              |
| $O11-H011\cdots O4^{vi}$       | 0.88 | 1.87                    | 2.642 (5)    | 146              |
| O21-H211···O2                  | 1.00 | 2.01                    | 2.962 (5)    | 158              |
| $O21-H212\cdots O22^{vii}$     | 0.95 | 1.98                    | 2.847 (5)    | 151              |
| O22-H221···O14                 | 0.99 | 1.89                    | 2.863 (6)    | 167              |
| O22−H222···O23 <sup>viii</sup> | 0.99 | 1.92                    | 2.822 (5)    | 151              |
| O23-H231···O24                 | 0.94 | 2.09                    | 2.860 (5)    | 138              |
| O23−H232···O2                  | 0.90 | 2.07                    | 2.874 (5)    | 149              |
| $O24-H241\cdots O12^{ix}$      | 0.93 | 2.07                    | 2.990 (5)    | 171              |
| O24-H242···O16                 | 0.84 | 2.34                    | 3.168 (5)    | 167              |

Symmetry codes: (v) x, 1+y, z; (vi) 1-x, 2-y, 1-z; (vii) 1-x, 1-y, -z; (viii) 1+x, y, z; (ix) -x, 1-y, 1-z.

The H atoms on C atoms, except those on disordered C atoms, were placed in calculated positions with C-H = 0.93 Å and included in the final cycles of refinement in a riding model, with  $U_{iso}(H) = 1.2U_{eq}$  of the carrier atom. Other H atoms were located with a combination of difference Fourier maps and theoretical calculation (Nardelli, 1993), and were included in the final cycles of refinement with fixed coordinates and isotropic displacement parameters of

 $0.08 \text{ Å}^2$ . An unreasonably short distance C54=C54(1 - x, 1 - y, -z) of 1.135 (7) Å and a longer C53-C54 distance of 1.539 (6) Å were observed in the structure. These may be due to disorder. The larger displacement parameters implied possible disorder of atom C54, but it was not successfully resolved.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654).

### References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (1999). SADABS (Version 2.0), SAINT (Version 6.02) and SMART (Version 5.6). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Liu, Y., Xu, D., Nie, J., Wu, J. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 155– 159.
- Nardelli, M. (1993). J. Appl. Cryst. 32, 563-571.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.